This article innovatively addresses machine translation from Chinese to Catalan using neural pivot strategies trained without any direct parallel data. The Catalan language is very similar to Spanish from a linguistic point of view, which motivates the use of Spanish as pivot language. Regarding neural architecture, we are using the latest state-of-the-art, which is the Transformer model, only based on attention mechanisms. Additionally, this work provides new resources to the community, which consists of a human-developed gold standard of 4,000 sentences between Catalan and Chinese and all the others United Nations official languages (Arabic, English, French, Russian, and Spanish). Results show that the standard pseudo-corpus or synthetic pivot approach performs better than cascade.