Chinese-Catalan: A Neural Machine Translation Approach Based on Pivoting and Attention Mechanisms


This article innovatively addresses machine translation from Chinese to Catalan using neural pivot strategies trained without any direct parallel data. The Catalan language is very similar to Spanish from a linguistic point of view, which motivates the use of Spanish as pivot language. Regarding neural architecture, we are using the latest state-of-the-art, which is the Transformer model, only based on attention mechanisms. Additionally, this work provides new resources to the community, which consists of a human-developed gold standard of 4,000 sentences between Catalan and Chinese and all the others United Nations official languages (Arabic, English, French, Russian, and Spanish). Results show that the standard pseudo-corpus or synthetic pivot approach performs better than cascade.

ACM Transactions on Asian and Low-Resource Language Information Processing